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Abstract

Generative text-to-image models, such as Stable Diffu-
sion, have demonstrated a remarkable ability to generate
diverse, high-quality images. However, they are surpris-
ingly inept when it comes to rendering human hands, which
are often anatomically incorrect or reside in the “uncanny
valley”. This paper proposes a method—HandCraft—for
restoring such malformed hands. This is achieved by auto-
matically constructing masks and depth images for hands as
conditioning signals using a parametric model, allowing a
diffusion-based image editor to fix the hand’s anatomy and
adjust its pose while seamlessly integrating the changes into
the original image, preserving pose, color, and style. Our
plug-and-play hand restoration solution is compatible with
existing diffusion models, and the restoration process fa-
cilitates adoption by eschewing any fine-tuning or training
requirements. We also contribute MalHand datasets that
contain generated images with a wide variety of malformed
hands in several styles for training and benchmarking, and
demonstrate through qualitative and quantitative evalua-
tion that HandCraft not only restores anatomical correct-
ness but also maintains the integrity of the overall image.

1. Introduction
Text-to-image diffusion models, such as Stable Diffusion

[25], have gained wide popularity due to their remarkable
capability to generate diverse, high-quality images across a
wide range of styles [23, 27]. However, they struggle to ac-
curately render human hands, often producing anatomically
incorrect or highly unusual forms [22]. These errors can in-
clude hands with supernumerary or missing digits, atypical
relative finger lengths, and other distortions. Fig. 1 illus-
trates two cases of such malformed hands, with a missing
finger in the top row and abnormal relative finger lengths in
the bottom row. These examples highlight the discrepancy
between the generated depictions and human anatomy.

Due to humans’ high sensitivity to deviations from the

expected human form, generating malformed hands often
leads to an “uncanny valley” [21] effect, which affects the
realism of these images. This in turn hinders the use of these
models as artistic tools. We note here that we do not use the
term “malformed” in the pejorative sense, since we recog-
nize that a wide variety of hand shapes are naturally present
in the human population or may arise from misadventure.
That is, the model is inadvertently forming the hands atyp-
ically, rather than intentionally depicting the difference that
exists in the human population.

Diffusion models’ propensity for generating malformed
hands has been widely recognized [3, 19, 22]. There has
been growing interest for techniques to repair these mal-
formed hands, reflected by a large number of tutorials
across various languages for this purpose [1,2,7,15]. How-
ever, the restoration methods proposed in these tutorials of-
ten necessitate human intervention. For instance, repeat-
edly inpainting the manually-annotated affected areas until
a satisfactory outcome is achieved [12]. The requirement
for human involvement makes the correction process labo-
rious. Prompt engineering has also emerged as a popular
strategy to mitigate the issue of malformed hands in images
generated by diffusion models [17, 26]. By meticulously
designing and refining text prompts, users attempt to guide
the model towards generating more anatomically accurate
hands [5]. Despite these efforts, even well-crafted prompts
often fail to prevent the occurrence of malformed hands [4].

We introduce an end-to-end framework designed to re-
pair malformed hands in generated images while minimiz-
ing the need for human intervention. To achieve this, we
propose an approach for generating a hand shape as a con-
ditioning image to guide ControlNet [29], a diffusion-based
image editing method, in correcting malformed hands. Our
method is capable of responsively adjusting the size and
angle of the hand shape, ensuring that the restored hand
seamlessly integrates with the original human figure, while
preserving the surrounding regions of the image unaltered.
Experimental results demonstrate the robustness of our ap-
proach. Furthermore, our restoration process is designed to
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(a) Malformed Hand (b) Spread Palm (c) Curved Gesture (d) Relaxed Pose

Figure 1. Images generated by Stable Diffusion [25] often exhibit anatomically incorrect hands (a), for example, a missing finger (top)
or abnormal relative finger lengths (bottom). Our method—HandCraft—is able to correct the hands in a controllable manner, allowing
for a variety of output gestures while following the style of the original image (b–d). The resulting images feature naturally-posed hands,
improving the quality of the AI-generated portraits and restoring the illusion of reality.

be plug-and-play, requiring no further fine-tuning or train-
ing, and is therefore easy to integrate into various diffusion
models. Our contributions are

1. HandCraft, a framework for detecting and restoring
malformed hands generated by diffusion models while
minimizing alterations to other image regions;

2. a simple yet robust control image generation method
to construct a mask and an aligned depth image for the
hand region as condition signals, enabling a diffusion-
based image editor to restore malformed hands; and

3. the MalHand datasets, comprising portraits with mal-
formed hands across diverse styles, that can be used to
train a malformed hand detector and thoroughly evalu-
ate baseline models.

HandCraft achieves state-of-the-art performance on both
the MalHand-realistic and MalHand-artistic datasets.

2. Related Work

In this section, we provide a brief overview of image syn-
thesis and editing techniques before discussing approaches
for restoring malformed hands in generated images.

Image Synthesis. After earlier successes with Variational
Autoencoders (VAEs) [14] and Generative Adversarial Net-
works (GANs) [8], diffusion models [9] have emerged as a
powerful new class of generative models. They are char-
acterized by their ability to map noise into complex im-
ages through a gradual denoising process. This technique
was refined by the development of Latent Diffusion Models

(LDMs) [25], which tackle the computational challenges by
operating in a latent space, significantly improving both ef-
ficiency and the quality of generated images. By leveraging
pretrained autoencoders, LDMs offer a versatile and flexi-
ble architecture that supports a wide range of conditioning
inputs, such as text descriptions. This advance enables effi-
cient and adaptable image synthesis models like Stable Dif-
fusion [25]. However, despite the impressive capabilities
of these models, generated images of humans often exhibit
malformed hands. The complex structure and fine details of
hands pose a challenge for these models, often resulting in
anatomically incorrect hand representations [22].

Image Editing has emerged as an application of generative
models, enabling users to modify existing images accord-
ing to their preferences. Early deep learning-based image
editing methods employed encoder-decoder architectures,
where the input image is encoded into a latent representa-
tion, manipulated, and then decoded to produce the edited
output [11, 28]. More recent techniques have explored the
use of GANs [8] for image editing [10,30]. ControlNet [29]
is a recent work that leverages diffusion models for im-
age editing by incorporating spatially-localized condition-
ing controls. The primary objective of ControlNet is to pro-
vide users with a means of introducing conditions, such as
Canny edges and human poses, to guide the generation and
editing of images from pretrained diffusion models.

Malformed Hand Restoration. Contemporary work has
also tackled the issue of correcting malformed hands in
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images generated by Stable Diffusion. HandDiffuser [22]
focuses on generating humans with non-malformed hands
from text, instead of restoring existing images. Han-
dRefiner [19], in contrast, has a more similar objective to
our work, albeit with a diverging approach. It modifies the
entire image to rectify the malformed hands, affecting the
overall composition and potentially altering unintended as-
pects of the image. In contrast, our research focuses specif-
ically on the malformed hand area, aiming to correct these
imperfections with minimal impact on the rest of the im-
age. This targeted approach allows for precise corrections
that maintain the integrity and originality of the generated
artwork, distinguishing our work from existing solutions.

3. Detecting and Restoring Malformed Hands
In this section, we detail the proposed HandCraft frame-

work. We begin by establishing the notation and provid-
ing an overview of the framework’s pipeline. Subsequently,
we delve into the generation of a conditional hand shape
that ensures anatomical plausibility and accurate position-
ing. This is followed by a discussion on defining the restora-
tion region within the image for localized correction while
preserving the overall image integrity.

3.1. The HandCraft Framework

Our HandCraft framework is designed to address restor-
ing malformed hands in images generated by diffusion
models, which is illustrated in Fig. 2. This framework con-
sists of three stages: malformed hand detection, control im-
age generation, and hand restoration.

At the malformed hand detection stage, a hand detec-
tor is applied to the input image I to identify the region of
interest, producing a bounding box mask Md for the mal-
formed hand. Any pretrained hand detection model, such
as YOLOv8 [18], can be used as the hand detector, but both
standard and malformed hands will be detected. By fine-
tuning the malformed hand detector on stylized images with
standard and malformed hands, our HandCraft framework
can accommodate diverse image styles, such as anime, and
avoid modifying the images when the generated hand is not
malformed. In addition to the malformed hand detector, a
body pose estimator (Mediapipe [20]) is also used to pre-
dict the body pose S, which facilitates the correct position-
ing and orientation of the hand template T . This is used
instead of a hand pose estimator, since the latter regularly
fails when applied to malformed hands.

At the control image generation stage, the primary ob-
jective is to create a control image Ic and a corresponding
control mask M that will guide the hand restoration process.
To this end, a control image generator aligns a pre-defined
hand template T , which is a depth map of a hand, using the
extracted body pose S to create the control image Ic, as well
as a template mask Mt. The control mask M is obtained by

the union of the bounding box mask Md extracted from the
original image and the hand template mask Mt, to precisely
localize the hand. The depth image Ic and the mask M for
hand are crucial conditioning signals for the editing process
to achieve a seamless integration of the restored hand.

The final stage is hand restoration. A pretrained Con-
trolNet [29] model with frozen weights is provided with the
control image Ic and mask M to adjust the input image I ,
given text prompt P that describes the shape of the hand
template T . This restoration process focuses only on the
hand region, while preserving the integrity of the rest of the
image. The output of this stage is the restored image I ′,
where the malformed hand has been restored to match the
desired shape and pose specified by the hand template and
text prompt. The restored hand blends with the original im-
age’s style and aesthetics, resulting in a more realistic and
anatomically correct representation.

Our framework’s versatility is evidenced by its success-
ful application to various instances of Stable Diffusion mod-
els, demonstrating its efficacy across diverse image styles.

3.2. Control Image Generation

The two main challenges when generating the condition-
ing signals for hand restoration are (1) ensuring the hand
template T is anatomically plausible for the body pose; and
(2) accurately positioning T in the input image to make a
seamless generation, inclusive of its rotation and handed-
ness (left or right hand). Our detailed solutions to address
these two challenges are provided below.

Ensuring Anatomical Plausibility. To guarantee the
anatomical plausibility of T , we utilize a predefined li-
brary [12] to randomly select an appropriate hand template.
While relying on predefined templates might constrain di-
versity, it significantly enhances the restoration’s anatomi-
cal accuracy—a critical factor since methods like mesh fit-
ting (e.g., using MeshFormer [16]) for severely deformed
hands in Md can lead to unnatural hand shapes that devi-
ate from typical human anatomy. Such deviations are evi-
dent when observing inputs with malformed hands in which
fingers may appear unnaturally bent or fused, as shown in
Fig. 3. In contrast, the template-based approach of aligning
T within the region defined by Md and subsequently adjust-
ing within the union mask M = Md ∪Mt ensures a more
faithful restoration, demonstrating the method’s efficacy in
maintaining anatomical fidelity.

In addition to the default random selection method, we
also propose a silhouette-based method to select the hand
template. Although the goal of HandCraft is to ensure
anatomical correctness of hand renders and seamless inte-
gration with the original image, not consistency with the
original (corrupt) hand render, we also provide an option to
encourage consistency between the malformed and restored
hand renders. We do so by generating multiple renders with
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Malformed 
Hand Detector

Body Pose 
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Control 
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Generator

ControlNet

Input Image I
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Text Prompt P
“opened-palm”

Control Mask M
Output Image I’

Bosy Pose S
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Template
Mask !%

U

U Union Operation

Fixed parameters

Figure 2. HandCraft flowchart. The framework has three stages for correcting malformed hands in images. (1) Hand detection. A
malformed hand detector is employed to detected the bounding box of the hand and a body pose estimator is used to predict the landmarks
on hands with the prior of the whole body pose. (2) Control image generation. The extracted body pose and a parametric hand template
are given to a control image generator to obtain a control image Ic and a template mask Mt. The final control mask M is obtained by
doing a union operation between the bounding box mask Md and the template mask Mt. (3) Hand restoration. The final output image with
corrected hand is generated using ControlNet given the input image, a text prompt, control mask and control image as the conditioning.

(a) Malformed hand (b) Mesh fitting (c) Restore via mesh (d) Using template

Figure 3. Comparison of hand restoration methods: (a) The original image with a deformed hand where fingers are bent in an unnatural
manner or are missing. (b) The result of mesh fitting, mimicking the incorrect finger alignment and positioning from the original, resulting
in a hand orientation that does not match the natural pose. (c) The outcome of attempting restoration with the flawed mesh, maintaining
the unnatural bending of the fingers, or resulting in a malformed hand inconsistent with the mesh condition. (d) The hand restored using a
predefined template, which achieves a natural-looking hand pose and maintains anatomical accuracy.

different hand template parameters, and automatically se-
lecting the render that most closely matches the silhouette,
as shown in Fig. 6.

Accurate Positioning and Orientation. The restoration
of deformed hands necessitates that the hand is not only

anatomically accurate but also precisely positioned and ori-
ented. This means that the hand template T should align
correctly in terms of location, rotation, and handedness (left
or right hand), corresponding to the detected deformation.
Fig. 4 illustrates that an inaccurate rotation will result in
misalignment between the hand and the wrist, and that the
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(a) No Rotation (b) 15° Rotation (c) 30° Rotation (d) Flipping

Figure 4. Impact of Template Rotation on Hand Restoration. (a) The original hand without any rotation. (b) The effect of a 15◦ rotation,
leading to a misalignment at the wrist and disrupting the natural flow from the forearm to the hand. (c) The effect of a 30◦ rotation, which
further exaggerates the misalignment and creates an unnatural hand shape. (d) The effect of flipping the hand template, resulting in a
mirrored appearance that is anatomically incorrect for that side of the body. These examples highlight the importance of accurate rotational
alignment and proper handedness, where even minor inaccuracies can significantly compromise the restoration’s anatomical precision.

Detected Keypoints Alignment Keypoints Overlaid Template

Figure 5. Alignment of Hand Keypoints. The left image illus-
trates a real hand with keypoints s1, s2, s3 and s4 detected by
a pose estimation algorithm. These points correspond to critical
anatomical landmarks necessary for accurate hand posing. The
right image displays a hand template with annotated keypoints t1,
t2, t3, and t4, which are intended to align with the keypoints of the
real hand after correcting for scale, position, and rotation. The pro-
cess involves scaling the template based on vector lengths, moving
it to match the keypoint positions, and rotating it accordingly.

Input Silhouette Restored

Figure 6. Silhouette-guided consistent hand restoration.

wrong handedness (chirality) leads to generation errors.
As shown in Fig. 5, the procedure is as follows.

1. Identification of Keypoints: Utilizing pose estima-
tion (e.g., MediaPipe [20]), we identify keypoints
Sh = {s1, s2, ..., sn} ⊂ S on the deformed hand

within Md. Corresponding keypoints are also de-
fined on the hand template T , denoted as Th =
{t1, t2, ..., tn}.

2. Scaling: The template T is scaled to match the size
of the detected hand, based on the ratio of distances
between key pairs in Sh and Th, ensuring T fits the
size of the deformation in Md.

3. Translation: T is then translated such that its refer-
ence point (e.g., the base of the palm) aligns with the
equivalent point in S.

4. Rotation: To correct for orientation, a rotation ma-
trix R(θ) is applied to T , where θ is the angle calcu-
lated from the orientation discrepancy between Sh and
Th. For handedness correction, a conditional mirroring
transformation may also be applied if necessary.

This ensures that the transformed template T aligns accu-
rately with the orientation and position of the detected hand
within the image I , effectively correcting the deformation
within the region defined by M = Md ∪ Mt. This proce-
dure highlights the significance of precise alignment in hand
restoration, where even minor deviations can lead to an un-
natural appearance. By applying these steps, we ensure that
the restored hand is correctly aligned and integrated within
the input image, maintains anatomical accuracy and seam-
lessly blends into the original scene, thus preserving the
overall authenticity of the image.

3.3. Hand Restoration

To ensure that the hand restoration process is targeted
and does not inadvertently modify other parts of the im-
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age, we introduce the concept of a restoration region. This
guides ControlNet [29] to concentrate exclusively on the
identified deformity. Such a strategy reflects our goal of
maintaining the original image’s integrity, ensuring only the
malformed hand is rectified.

The restoration region should: (1) encompass the entire
area of the malformed hand, ensuring comprehensive cor-
rection, as represented by the mask Md; and (2) be suffi-
ciently large to accommodate the corrected hand shape, i.e.,
the hand template T , as represented by the template bound-
ing box mask Mt. This ensures that the restoration does
not introduce any spatial constraints that could compromise
the correction’s effectiveness. The final restoration region,
denoted as M , is then given by the union of Md and Mt

(M = Md ∪ Mt). This union ensures that the restoration
region is optimally sized to cover both the detected defor-
mity and the area required for the corrected hand shape.

This methodical definition of the restoration region is
pivotal, as it directly influences the restoration’s quality and
the preservation of the image’s overall composition. Exper-
imental analyses affirm the efficacy of this dual-region ap-
proach, highlighting its superiority in achieving precise and
aesthetically cohesive hand restorations within the broader
context of the original images.

4. Experiments
In this section, we present our experiments, where we

evaluate the performance of HandCraft qualitatively and
quantitatively and compare it to a baseline method.

4.1. Dataset

We propose MalHand datasets, including training and
evaluation datasets. The evaluation dataset is divided
into photorealistic images (MalHand-realistic) and stylized
artistic images (MalHand-artistic). Here, we outline the
process of generating these datasets.

Training data. While using a pretrained hand detection
model, such as YOLOv8 [18], provides satisfactory perfor-
mance to detect the malformed hands, greater accuracy can
be achieved by finetuning the model. To do so, it is nec-
essary to compile a training dataset with malformed hands
and their locations. For this purpose, we utilize the HaGRID
dataset [13], which contains portrait photos featuring hands,
along with bounding boxes that mark the hand positions.

To create instances of malformed hands for our train-
ing data, we leveraged Stable Diffusion [25] to modify the
hands within the provided bounding boxes, using “hands”
as the guiding text prompt. This process aimed to generate
a variety of hand abnormalities similar to those encountered
in images produced by Stable Diffusion models. After gen-
erating these modified hands, we manually selected images
that clearly displayed malformed hands. This selection pro-

cess resulted in a dataset comprising 60,000 images, each
featuring at least one malformed hand.

Additionally, to ensure the model can distinguish be-
tween malformed and normal hands, we also evaluate our
metrics on the unaltered images from HaGRID [13]. The
bounding boxes from the original dataset were preserved to
provide the locations of both normal and malformed hands.

Evaluation data. To assess the effectiveness of our algo-
rithm in restoring malformed hands across various styles,
we compiled a dataset comprising 1,500 portrait images
featuring malformed hands. This dataset is divided into
two categories: 1,000 images in a realistic style (MalHand-
realistic) and 500 images in artistic styles (MalHand-
artistic). By incorporating a mix of styles, we aim to eval-
uate the algorithm’s robustness and adaptability to different
visual representations. The realistic images consist of those
sourced from the HaGRID dataset [13]. The generating pro-
cess is similar to the training data, using a different set of
images. These images are used for quantitative evaluation.

We also generated artistic-style portrait images us-
ing Stable Diffusion for qualitative evaluation, including
Japanese anime and Disney cartoon styles, among others.
Complete prompts and instructions for generation are pro-
vided in the supplement. We then manually identified por-
traits with malformed hands. Bounding boxes for these mal-
formed hands were obtained via crowdsourcing, with de-
tailed instructions provided to ensure consistency and accu-
racy. These instructions are included in the supplement.

4.2. Evaluation Metrics

Mean hand pose confidence. This metric assesses the nat-
uralness of the hand’s anatomy by averaging the confidence
scores predicted by Mediapipe [20] across all detected hand
keypoints. Let cij denote the confidence of the jth hand key-
point out of the set of detected keypoint indices Ji for hand
i in a dataset containing N hands. Then the mean hand pose
confidence is given by

c̄pose =
1

N

N∑
i=1

1

|Ji|
∑
j∈Ji

cij . (1)

Mean hand classifier confidence. This metric assesses the
model’s ability to generate hands that can be confidently
classified as non-malformed by our YOLOv8-based hand
detector [18]. Let c′i denote the confidence of the hand clas-
sifier for hand i in a dataset containing N hands. Then the
mean hand classifier confidence is given by

c̄classifier =
1

N

N∑
i=1

c′i. (2)

Masked peak signal-to-noise ratio (PSNR) / masked
structural similarity index measure (SSIM). These met-
rics assess how well the image outside the restored area is

6
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Figure 7. Human hand naturalness score has positive correlation
with cpose and cclassifier

(a) cpose (b) cclassifer

Figure 8. Box plots demonstrating the performance of different
methods in restoring anatomical correctness to images with mal-
formed hands. (a) The hand pose confidence cpose, where Hand-
Craft shows a notable improvement over HandRefiner, closely
aligning with the non-malformed control group. (b) The hand clas-
sifier confidence cclassifier, where HandCraft’s restorations achieve
comparable confidence levels to HandRefiner.

preserved, at a per-pixel and structural level: whether the
restoration has altered or corrupted the rest of the image.

Validation. User studies were conducted to investigate
whether the confidence scores (i.e., cpose and cclassifier) corre-
lated with naturalness. Seven unaffiliated individuals rated
the naturalness of hands in each image, from a stratified
random subset of 200 restored images, on a scale of 1 to 5,
where 1 is least natural and 5 is most natural. As shown in
Fig. 7 (opacity 1%), the hand pose confidence score (cpose)
and the hand classifier confidence score (cclassifier) correlates
with perceived naturalness. The average Pearson’s correla-
tion coefficient between cpose and human-rated naturalness
scores is 0.44 and the average correlation for cclassifier is 0.82.

4.3. Comparison with Control Images

We quantitatively compare the anatomical accuracy of
HandCraft’s restored images to a control group of images
without malformed hands. Two sets are assembled for eval-
uation: a control set DC composed of the real images from
the HaGRID dataset [13] and a set DR composed of realistic
images with malformed hands from the MalHand-realistic
dataset, which have undergone hand restoration with Hand-
Craft. For each image, we calculate the hand pose confi-
dence cpose and hand classifier confidence cclassifer, reflecting

Table 1. Quantitative comparison of hand restoration methods on
the MalHand-realistic dataset. We report the mean hand pose con-
fidence (c̄pose) to assess the accuracy of the hand restoration, the
mean hand classifier confidence (c̄classifier) to assess whether a clas-
sifier deems the hand as non-malformed, the masked peak signal-
to-noise ratio (PSNR) to assess the visual fidelity outside of the
hand region, and the masked structural similarity index measure
(SSIM) to assess any change in structural content. The latter two
are calculated between the input image I with malformed hands
and restored images.

Method c̄pose ↑ c̄classifier ↑ PSNR ↑ SSIM ↑
Null Intervention 0.68 0.00 N/A N/A
HandRefiner [19] 0.54 0.25 12.93 0.3839
HandCraft (Ours) 0.79 0.25 23.40 0.6462

anatomical correctness as perceived by hand detection and
pose estimation algorithms, with higher scores indicating
closer resemblance to authentic hand anatomy.

Fig. 8 shows overlapping hand pose confidence intervals
between the restored and Non-Malformed images. While
there is a statistically significant difference between the two
groups, this is partly due to inherent differences between
real and restored generated images. The overlap in mean
hand pose confidence scores between HandCraft restora-
tions and the Non-Malformed group indicates HandCraft’s
superior performance in restoring anatomical correctness
compared to HandRefiner.

4.4. Comparison with HandRefiner

To demonstrate the effectiveness of HandCraft, we com-
pare its performance with the current state-of-the-art, Han-
dRefiner [19], on the MalHand-realistic dataset. The results
in Tab. 1 indicate that HandCraft outperforms the null inter-
vention (no restoration) and HandRefiner [19] in terms of
hand pose confidence and is comparable in terms of hand
classifier confidence. HandCraft also achieves a higher
masked PSNR and SSIM in the non-hand regions, reflect-
ing its ability to preserve the integrity of the image while
correcting the hand anatomy. These results validate the
efficacy of our method in generating realistic and natural-
looking hand postures without compromising the quality of
the original image. The results are further supported by
qualitative comparisons conducted on the MalHand-artistic
dataset, as shown in Fig. 9. These visual examples clearly
demonstrates that HandCraft not only corrects the mal-
formed hands but also does so with a seamless integra-
tion into the original portrait, surpassing the performance of
HandRefiner [19]. As shown at the bottom right of Fig. 9,
we infrequently observe artifacts at the border of the regen-
erated area. An algorithm to mitigate this is presented in
the supplement, alongside more qualitative results, failure
cases and a discussion of limitations.
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Figure 9. Comparison between various hand restoration techniques. HandCraft demonstrates superior performance in hand rectification
tasks, seamlessly integrating corrected hand into the original portraits. PSNR and SSIM metrics reveals that HandCraft achieves this while
minimizing perturbations to non-hand regions, significantly outperforming the baseline HandRefiner [19] method.

5. Discussion and Conclusion

Despite advances in generative image models, the is-
sue of malformed hands has persisted across generations of
such models, even in recently-released state-of-the-art sys-
tems like Stable Diffusion XL [24] and Sora [6]. We pro-
vide visualizations in the supplement highlighting instances
of anatomically incorrect hands produced by these latest
models. As such, we expect HandCraft to remain useful
for some time, since this issue appears to be quite persis-
tent. Even if this challenge is overcome by a new gener-
ative model, our method provides functionality to change
hand gestures and poses for creative control, offering utility
beyond just correcting malformed hands.

Our HandCraft framework addresses the challenge of
correcting malformed hands in images generated by text-
to-image diffusion models. Through the use of a paramet-
ric hand model to guide a diffusion-based image editor, we
achieve seamless anatomical corrections that integrate with
the original image’s aesthetics. Our approach is both effec-
tive and accessible, requiring no additional training. The
accompanying Malhand datasets further enriches the field
by providing resources for training and benchmarking. Fur-
thermore, comparisons with a state-of-the-art method Han-
dRefiner [19] showed that HandCraft not only surpassed it
in restoring hand anatomy but also maintained the integrity
of the rest of the image. We hope that the proposed Hand-
Craft will be useful for artists, designers, and developers.
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